Л 6. Линии и поверхности второго порядка. Исследование уравнения второго порядка. Эплипс. Гипербола. Парабола

Рассмотрим в начале частные виды кривых, определяемых на плоскости уравнениями, в которых неизвестные x и y присутствуют только в первой или во второй степени.

1. Пусть на плоскости Oxy име югся две точки F_1 и F_2 , называемые фокусами на расстоянии 2c друг от друга (2c — фокусное расстояние). Для определенности расположим их на оси Ox симметрично относительно начало координат, т.е. $F_1(-c,0)$ и $F_2(c,0)$. Пусть 2a > 2c.

Определение. Эплипсом называется геометрическое место точек M плоскости, сумма расстояний, от которых до двух выбранных фокусов, постоянна и равна 2a.

Разделив части уравнения на a^2b^2 , получим

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, где $b = \sqrt{a^2 - c^2}$.

Это уравнение называется каноническим уравнение м эллипса, а числа a и b его полуосями (боль пой и малой). Подставив в каноническое уравнение значение y=0, получим $\frac{x^2}{a^2}=1$; $x^2=a^2$, $x=\pm a$, т.е. эллипс пересекает ось Ox в точках с координатами $x=\pm a$. Аналогично проверяется, что ось Oy эллипс пересекает в точках $y=\pm b$. Эти точки пересечения эллипса с осями координат называются вершинами эллипса.

Несложно проверить, что т. O является центром симметрии эллипса, описывае мого каноническим уравнением, а оси Ox и Oy его осями симметрии. Ось, проходя щая через фокусы эллипса (ось Ox), называется его фокальной осью Число $e = \frac{c}{a}$ называется эксцентриситетом У эллипса $0 \le e < 1$. Прямые, проходя щие перпендикулярно фокальной оси на расстоянии $d = \frac{a}{e} = \frac{a^2}{c}$ от центра эллипса, называются директрисами эллипса.

2 В частном случае, когда фокусное расстояние эллипса 2c=0, два фокуса эллипса совпадают с его центром При этом a=b и каноническое управление эллипса принимает вид

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$$
 WIИ $x^2 + y^2 = a^2$.

Это уравнение называется каноническим уравнением окружности радиуса a. У окружности эксцентриситет e=0, а директрисы отсутствуют.

Уравнение окружности радиуса а с центром в точке $O'(x_0, y_0)$ имеет вид:

$$(x-x_0)^2 + (y-y_0)^2 = a^2$$
.

Пример. Запишем уравнение окружности с центром в точке $M_0(3,4)$, проходящей через начало координат. Поскольку радиус окружности

 $a = |OM_0| = \sqrt{3^2 + 4^2} = 5$, то уравнение этой окружности имеет вид $(x-3)^2 + (y-4)^2 = 25$.

Гипербола. Пусть на плоскости име югся два фокуса (например $F_1(-c,0)$ и $F_2(c,0)$ и пусть a < c.

Определение. Гиперболой называется геометрическое место точек M плоскости, разность расстояний от которых до двух выбранных фокусов постоянна и равна $\pm 2a$. И каноническим уравнением гиперболы записывается так

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, где $b = \sqrt{c^2 - a^2}$.

Число а называется действительной полуосью гиперболы, а число b- ее мни мой полуосью

Подставив в каноническое уравнение y=0, получим $x^2=a^2$, т.е. $x=\pm a$, следовательно, гипербола пересекает ось Ox в точках (a,0) и (-a,0). Эги точки называются вершинами гиперболы Подставив в каноническое уравнение x=0, получим $-\frac{y^2}{b^2}=1$. Это уравнений решения не имеет, поэтому гипербола с каноническим уравнением с осью Oy не пересекается. Как и у эллипса, т. O является центром симметрии гиперболы, а оси Ox и Oy ее осями симметрии.

Определения эксцентриситета и директрис гиперболы повторя ю соответствующие определения для эллипса. Эксцентриситет гиперболы e > 1.

Определение. Прямая L называется асимптотой кривой K, если расстояние от точки на кривой до этой прямой стремится к нулю при удалении точки вдоль кривой в бесконечность.

Это определение не вполне корректно. Точное определение асимптоты опирается на понятие предела, которое будет изучаться позже. В четвертом модуле будет приведено доказательство следующего факта. Прямые $y = \pm \frac{b}{a}x$ явля ются асимптотами обеих ветвей гиперболы $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Парабола. Пусть на плоскости имеется прямая D (директриса) и точка F (фокус) на расстоянии p от директрисы. Пусть D имеет уравнение $x=-\frac{p}{2}$, фокус - координаты $F\left(\frac{p}{2},0\right)$.

Определение. Параболой называется геометрическое место точек M плоскости, расстояние от которых до фокуса совпадает с расстоянием до директрисы (см рис. 2 19).

Пусть N - проекция точки M(x,y) на директрису D . Из условия |MN| = |MF| выведем уравнение параболы $x + \frac{p}{2} = \sqrt{\left(x - \frac{p}{2}\right)^2 + y^2}$; $x^2 + px + \frac{p^2}{2} = x^2 - px + \frac{p^2}{4} + y^2$; $y^2 = 2px$.

Это уравнение называется каноническим уравнением параболы, а число p>0 ее параметром Парабола проходит через точкой O, которая называется ее вершиной. Ось Ox является осью симметрии параболы Эксцентриситет e параболы всегда считается равным единице. Асимптот у параболы нет.

Теоре ма. Пусть на плоскости заданы прямая D (директриса) и точка F (фокус), не лежа щая на D. Пусть задано число e>0 (эксцентриситет). Тогда геометрическое место точек M плоскости таких, что отно шение расстояние от M до F к расстоянию от M до D равно e, является:

а) эллипсом, при e < 1; в) гиперболой, при e > 1; с) параболой, при e = 1.

Об щее уравнение кривой второго порядка

Определение. Кривой второго порядка называется множество точек плоскости, декартовы координаты которых удовлетворя юг уравнению

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + b_1x + b_2y + c = 0$$
.

Здесь хотя бы одно из чисел a_{11}, a_{12}, a_{22} оглично от нуля. Эго уравнение называется общим уравнением кривой второго порядка.

Поверхности второго порядка. Рассмотрим вначале частные виды поверхностей, определяемых в пространстве уравнениями, в которых неизвестные x, y, z присутствуют только в первой или во второй степени.

1. Пусть в пространстве имеется кривая K и прямая L.

Определение. Цилиндрической поверхностью (цилиндром) с направляющей K и образующей L называется геометрическое место точек пространства, лежащих на прямых, проходящих через точки K параллельно L.

- 1. 1. Эплиптический цилиндр имеет направляющей эллипс и каноническое уравнение $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. В частности, круговой цилиндр: $x^2 + y^2 = a^2$ имеет направляющей окружность.
- 1. 2 Гиперболический цилиндр имеет направляющей гиперболу и каноническое уравнение $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 1. 3. Параболический цилиндр имеет направляющей параболу и каноническое уравнение $y^2 = 2 px$.
- 1. 4. Уравнение $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$ определяет ось Oz.
- 1. 5. Уравнения $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$ и $x^2 = -1$ пустое множество.

- 1. 6 Уравнение $\frac{x^2}{a^2} \frac{y^2}{b^2} = 0$ пара пересека ющихся по оси O_Z плоскостей
- 1. 7. $x^2 = a^2$ пара плоскостей, параллельных Oyz.
- 1. 8 $x^2 = 0$ плоскость *Oyz*.

Все перечисленные поверхности называются цилиндрическими поверхностями второго порядка.

1. Пусть в пространстве имеется кривая K и точка O, не лежа щая на K.

Определение. Конической поверхностью (конусом) с направляющей K и вершиной O называется геометрическое место точек пространства, лежа щих на прямых, проходящих через O и пересека ющих K.

В частности, конические поверхности, рассматриваемые в школьной программе, имели направляющие окружности K, их вершины находились на прямой, проходящей через центр K перпендикулярно плоскости окружности

Заметим, что вершина O любой конической поверхности является ее центром симметрии.

Уравнение $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ (a,b,c>0) называется каноническим уравнением конуса второго порядка.

1. Поверхность, определяемая каноническими уравнениями $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, (a,b,c>0)$

называется эллипсоидом, а числа a,b,c — его полуося ми.

2. Поверхность, определяемая каноническим уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$, (a,b,c>0)

наз ывается двуполостным гиперболоидом

3. Поверхность, определяемая каноническим уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$, (a,b,c>0)

наз ывается однополостным гиперболоидом

4. Поверхность, определяемая каноническим уравнением $\frac{x^2}{2p} + \frac{y^2}{2q} = z$, (p,q>0) называется эллиптическим параболоидом

5. Поверхность, определяемая каноническим уравнением $\frac{x^2}{2p} - \frac{y^2}{2q} = z$,

(p,q>0) называется гиперболическим параболоидом

6. Определение. Поверхность ю второго порядка называется мно жество точек пространства, декартовы координаты которых удовлетворяют уравнению

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + b_1x + b_2y + b_3z + c = 0.$$

Здесь хотя бы один коэ ффициент $a_{i,j}$ должен быгь отличен от нуля.

Теорема. Любая поверхность второго порядка в пространстве является одной из следующих поверхностей:

- 1) одной из цилиндрических поверхностей второго порядка;
- 2) конусом второго порядка;
- 3) Эплисоидом,
- 4) одно или двуполостным гиперболоидом,
- 5) эллиптическим или гиперболическим параболоидом

Найдется, такая декартова система координат O'x'y'z', в которой уравнение поверхности принимает канонический вид